
1

Performance Analysis on
Blue Gene Q with HPCToolkit

John Mellor-Crummey
Department of Computer Science

Rice University

http://hpctoolkit.org

Miracon March 7, 2013

2

Acknowledgments
• Funding

— DOE Office of Science SciDAC-2 (expired)
– Center for Scalable Application Development Software

 Cooperative agreement number DE-FC02-07ER25800
– Performance Engineering Research Institute

 Cooperative agreement number DE-FC02-06ER25762
— Sandia National Laboratory

• Project team
— Research Staff

– Laksono Adhianto, Mike Fagan, Mark Krentel
— Students

– Xu Liu, Milind Chabbi, Karthik Murthy
— Collaborator

– Nathan Tallent (PNNL)
— Summer Interns

– Michael Franco (Rice), Reed Landrum (Stanford), Sinchan Banerjee (MIT)
— Alumni

– Gabriel Marin (ORNL), Robert Fowler (RENCI), Nathan Froyd (Mozilla)

Outline
• HPCToolkit overview

• New developments
— monitoring and attribution of L2Unit activity
— a new emerging approach for performance analysis of OpenMP

• Next steps

• Using HPCToolkit on Blue Gene/Q at ALCF

3

4

Rice University’s HPCToolkit
• Employs binary-level measurement and analysis

— observe fully optimized, dynamically linked executions
— support multi-lingual codes with external binary-only libraries

• Uses sampling-based measurement (avoid instrumentation)
— controllable overhead
— minimize systematic error and avoid blind spots
— enable data collection for large-scale parallelism

• Collects and correlates multiple derived performance metrics
— diagnosis typically requires more than one species of metric

• Associates metrics with both static and dynamic context
— loop nests, procedures, inlined code, calling context

• Supports top-down performance analysis
— identify costs of interest and drill down to causes

– up and down call chains
– over time

source
code

optimized
binary

compile & link call path
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

5

source
code

optimized
binary

compile & link call path
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

6

• For statically-linked executables on Blue Gene/Q
— add monitoring by using hpclink as prefix to your link line

– uses “linker wrapping” to catch “control” operations
 process and thread creation, finalization, signals, ...

source
code

optimized
binary

compile & link call path
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

• Measure execution unobtrusively
— launch optimized application binaries

– use environment variables to specify what to measure
— collect statistical call path profiles of events of interest

7

Measure and attribute costs in context
 sample timer or hardware counter overflows
 gather calling context using stack unwinding

Call Path Profiling

8

Call path sample

instruction pointer

return address

return address

return address

Overhead proportional to sampling frequency...
...not call frequency

Calling context tree

source
code

optimized
binary

compile & link call path
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

• Analyze binary with hpcstruct: recover program structure
— analyze machine code, line map, debugging information
— extract loop nesting & identify inlined procedures
— map transformed loops and procedures to source

9

source
code

optimized
binary

compile & link call path
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

• Combine multiple profiles
— multiple threads; multiple processes; multiple executions

• Correlate metrics to static & dynamic program structure

10

source
code

optimized
binary

compile & link call path
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

• Presentation
— explore performance data from multiple perspectives

– rank order by metrics to focus on what’s important
– compute derived metrics to help gain insight

 e.g. scalability losses, waste, CPI, bandwidth
— graph thread-level metrics for contexts
— explore evolution of behavior over time

11

Code-centric Analysis with hpcviewer

12

costs for
• inlined procedures
• loops
• function calls in full context

source pane

navigation pane metric pane

view control
metric display

Scalability Analysis
• Difference call

path profile
from two
executions
— different

number of
nodes

— different
number of
threads

• Pinpoint and
quantify
scalability
bottlenecks
within and
across nodes

13

21% of scaling
losses caused by
passing data around
a ring of processors

14

Time-centric Analysis with hpctraceviewer
Load imbalance among threads appears as different

lengths of colored bands along the x axis

Measurement & Attribution of L2 Activity
• L2Unit measurement capabilities

— e.g., counts load/store activity
— node-wide counting; not thread-centric
— global or per slice counting
— supports threshold-based sampling

– samples delivered late: about 800 cycles after threshold reached
– each sample delivered to ALL threads/cores

• HPCToolkit approach
— attribute a share of L2Unit activity to each thread context for

each sample
– e.g., when using a threshold of 1M loads and T threads,

attribute 1M/T events to the active context in each thread when each
sample event occurs

— best effort attribution
– strength: correlate L2Unit activity with regions of your code
– weakness: some threads may get blamed for activity of others

15

Emerging Analysis for OpenMP
• Challenges

— conventional profiling tools can only provide implementation-level
view of OpenMP threads
– master thread
– worker thread

— no context available for computation performed by worker threads
— hard to understand causes of idleness

– insufficient parallelism
– poor load balance
– waiting for critical sections or locks

• New approach
— leading development of OpenMP tools API - OMPT

– provides sufficient hooks to address all three challenges
— prototype implementation of OMPT in IBM’s emerging LOMP

OpenMP runtime
— prototype implementation using LOMP in HPCToolkit

16

Blame Shifting from Symptoms to Causes

• Approach
— shift blame for idleness to code executing while other threads idle

– undirected blame
– directed blame

• Implementation of undirected blame shifting
— callback at thread transitions idle ↔ working
— maintain two global counters

– thread created (or dedicated HW resources that are reserved)
– number of threads that are working
– idleness is the difference between the two counters

— at a sample event
– if the thread is actively working

 attribute a sample of work to the present context
 attribute partial blame for idleness to the present context

– else, ignore the sample event

17

Next Steps
• Finish OpenMP support

— finalize OpenMP tools interface with standards committee
— merge OpenMP support into trunk

• Scale I/O strategy
— one file per node rather than one file per thread

• Scale traceviewer
— split traceviewer into client server

– server runs as a parallel program on vis cluster
– client runs on your laptop

• Explore automated analysis of time-centric data

• Data-centric analysis

• Resource-centric performance analysis
— within and across nodes

18

HPCToolkit at ALCF
• ALCF systems

— /soft/perftools/hpctoolkit/pkgs/hpctoolkit

• Man pages
— /soft/perftools/hpctoolkit/pkgs/hpctoolkit/share/man

• ALCF guide to HPCToolkit
— http://www.alcf.anl.gov/resource-guides/vesta-hpctoolkit

19

Detailed HPCToolkit Documentation
 http://hpctoolkit.org/documentation.html

• Comprehensive user manual:
 http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
— Quick start guide

– essential overview that almost fits on one page
— Using HPCToolkit with statically linked programs

– a guide for using hpctoolkit on BG/Q, BG/P, and Cray XT
— The hpcviewer and hpctraceviewer user interfaces
— Effective strategies for analyzing program performance with

HPCToolkit
– analyzing scalability, waste, multicore performance ...

— HPCToolkit and MPI
— HPCToolkit Troubleshooting

– why don’t I have any source code in the viewer?
– hpcviewer isn’t working well over the network ... what can I do?

• Installation guide
20

Using HPCToolkit
• Add hpctoolkit’s bin directory to your path

— see earlier slide for HPCToolkit’s HOME directory on your system

• Adjust your compiler flags (if you want full attribution to src)
— add -g flag after any optimization flags

• Add hpclink as a prefix to your Makefile’s link line
— e.g. hpclink mpixlf -o myapp foo.o ... lib.a -lm ...

• See what sampling triggers are available on BG/Q
— use hpclink to link your executable
— launch executable with environment variable

HPCRUN_EVENT_LIST=LIST
– you can launch this on 1 core of 1 node
– no need to provide arguments or input files for your program

 they will be ignored

21

Collecting Performance Data on BG/Q
• Collecting traces on BG/Q

— set environment variable HPCRUN_TRACE=1
— use WALLCLOCK or PAPI_TOT_CYC as one of your sample

sources when collecting a trace

• Launching your job on BG/Q using hpctoolkit
— qsub -A ... -t 10 -n 1024 --mode c1 --proccount 16384 \

--cwd `pwd` \
--env OMP_NUM_THREADS=2:\
 HPCRUN_EVENT_LIST=WALLCLOCK@5000:\
 HPCRUN_TRACE=1\
your_executable

22

Monitoring Large Executions
• Collecting performance data on every node is typically not

necessary

• Can improve scalability of data collection by recording data
for only a fraction of processes
— set environment variable HPCRUN_PROCESS_FRACTION
— e.g. collect data for 10% of your processes

– set environment variable HPCRUN_PROCESS_FRACTION=0.10

23

Digesting your Performance Data
• Use hpcstruct to reconstruct program structure

— e.g. hpcstruct your_app
– creates your_app.hpcstruct

• Correlate measurements to source code with hpcprof and
hpcprof-mpi
— run hpcprof on the front-end to analyze data from small runs
— run hpcprof-mpi on the compute nodes to analyze data from lots

of nodes/threads in parallel

• Digesting performance data in parallel with hpcprof-mpi
— qsub -A ... -t 20 -n 32 --mode c1 --proccount 32 --cwd `pwd` \

/soft/perftools/hpctoolkit/pkgs/hpctoolkit/bin/hpcprof-mpi \
-S your_app.hpcstruct \
-I /path/to/your_app/src/+ \
hpctoolkit-your_app-measurements.jobid

24

Analysis and Visualization
• Use hpcviewer to open resulting database

— warning: first time you graph any data, it will pause to combine
info from all threads into one file

• Use hpctraceviewer to explore traces
— warning: first time you open a trace database, the viewer will

pause to combine info from all threads into one file

• Try our our user interfaces before collecting your own data
— example performance data:

 http://hpctoolkit.org/examples.html

25

A Special Note About hpcstruct and xlf
— IBM’s xlf compiler emits machine code for Fortran that has an

unusual mapping back to source

• To compensate, hpcstruct needs a special option
— --loop-fwd-subst=no
— without this option, many nested loops will be missing in

hpcstruct’s output and (as a result) hpcviewer

26

